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EXACT SOLUTIONS FOR LII'TING SURFACLES

P. . Jordan®

RIAS, Martin Marictta Corp., Baltimore, Md.

The obstacle which has prevented the determination of exact lifting
surfacc solutions was the singularity at the wing tip. This problem has now heen
solved analytically for the circular wing and thereby, to an extent, for wings with
parabolic wing tips in general. The paper reports the analytical results., It
describes how numerical solutions for the circular wing carn conveniently be cal-
culated i{ only engincering accuracy is required. IFour linearly independent solu-
tions ‘have been determined to very high accu"zzcy‘ and are listed in tables; the tables
arc short since it is possible to split off the singularity, The samples conflirm some

expected and provide some unexpected insights into the mechanism of lifting flow.
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1. Introduction

A great deal of work has been and is being dene, many papers have been
publishcd, and many computuer programs are available concerned with calculating
pressure distribvtions over lifling wings of finite aspect ratio. Nevertheless, the
state of the art is not satisfactory., New approaches continue to be proposed, not
only because of various complications in the wing model, but largely due to inhcrent
difficultics which arnse from singularitics in the mathematical formulation of the
problemi. Congider here only the basic cngincering model, the thin lifting surface
in stcady linear suhsonic (hcnce, by the Prandil-Glauvert traneformation, incom-
pressible) flow. No exact solution for any problem of this iype has been available,
Availalle numerical muetheds are approximative collocation inethods, The agreement
betwecen caleulated result and experiment is often satisfacto: y; on the other hand,
there arc exceptions, Then, in the abscnce of an exact sclotion for the necessarily
idealized model of the analysis, there is no criterion by wlich to determine if the
fault Yies with either the idealizations in the model or the inaccuracies of the colloca-
tion method, The temptation is to blame the model, but div-rgencies continue to
occur in, and between, collocation analyses for a given medel, Hence efforts to
improve collocation analysis continue,

The present paper does not deal with collocation analyses, Its purpose is to
make cxact rolutions readily wvailable - -1ot exact solutions for all possible engineering
models, of course, but exact solution for the basic nmodel in the shape of a circular
wing. Thesc solutiuns describe the pressure singulavity th=t arises on a parai)olic
tip of a wing of any aspect ratio (one of the hitherto unresolved fundamental problems
of potential flow theory) but they are useful beyond this sormewhat academic point,
They co- be used to check the reliability of a given collocation method, They can also
provide, sometimes by mceans of a very brief and straightfarward calculation, reliable
ifdsights into the mechanism of lifting flow which would be very difficult and cumber -

some to derive coavincingly with a collocation analysis. T an extent, they can be
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gencralized to other wing planforms. Furthermore, they allow one to calculate
the initial vortex trail exactly.

Our exact solution is based on a formulation by Kinner1 which has been avail-
able since 1937. Prandtl had pointed out that the then new acceleration potential
approach would permit on.c to obtain exact solutions (it no longer required a priori
assumptions ahout the shape of the trailing vortex sheet). The circular wing in
incompressible flow appeared to be a suitable model, Kinner2 formulated the
analysis and succceded in detcrmining overall lift and moment. However, the
Kinner results appear to diverge toward the wing tips, and the formulation appeared
to be too cumbersome to be of much practical value,

Actually, solutions of the Kinner formulation can readily be calculated to

considerable accuracy by solving a relatively simple linear system, The truncated
infirite set of numbers which one obtains converges to zero only slowly. The bulk
of this sct dcscribes the solution for the planar wing (this solution we have chosen
as our rcfevence solulion; its chief characteristic is the wing tip singularity).
With any other solution, the part which is of primary enginecring interest is the
pressure distribution over the inner part of the wing; this distribution is contained
in the void set, that part of the numericnl sct which is void of the tip singularity.
This void sct converges much mors rapidly,

The analysis by which the details of the structure of the exact solution were

2-5 The leading terms® were used’ to cal-

derived has been described elsewhere
culate the initial shape of the vortex trail (and thus to indicate necegsary correclions
to carlier analyses), The compleie solution is described in Ref. 4; cortain results
of more gencral mathematical interest are presented in Ref. 5.

In Section 2 of this paper, the here relevant results of the analysis are
reported. In Section 3, the numerical methods are descx™ 1 by which we have

calculated the reference solution ta a very high accuracy; though this accuracy is

not normally recuired, it serves to demonstrate the details of its struc .re,

o




Further accurate solutions, obtaincd with relative ease once the reference solution
is known, are presented an.d discussed in Section 4.

An alternative simplified approach, uvseful if onc is interested in the solution
over the inner part of the wing rather than in the tip singularity, is presented in
Section 5, Sample pressure distributions are discussed in Section 6.

The methods here presented al'ow one to investigate a wide variety of
problems of technical interest. The present paper is confined to cases where the
given downwash is synmunetric and docs not cenain camber. However, this special-

ization is not essential,

2. Analytical Results

(a) Pressure Distribution
We describe the pressure difference p between lower and upper wing surfaces
by a non-dimensional pressure function p. From p the singularitics in p of orders

+1 at the leuding edge (1. e. ) and the trailing edge (t.e. ) have been removed:

p= u-gz)’%p/q (2.1)

Here q is the dy'namic': pressure and the local chordwise coordinate such that

The given boundary condition is the downwash wV on the wing, V is the
forward speed, w=tand, d the local incidence. Consider the two limit cases for
which solutions are known, the infinite uniform wing (2-D; the two-dimensional casc)
and the slender wing (s.w.), specifically here the elliptic s, w. in the limit k-0,
where k the axis ratio of the ellipse. The naturc of the chordwise distribution f)(t)
differs distinctly between these two limits, Assume w constant, and normalize

to w=1, Onec then has the following comparison:
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f‘(f) 7} e
2-D| 4(1-§) vt | -o.5
4|t <0 -
B.W. g lk'} if {g } 2k | -T/4 (2.2)
U o ¥20

where C, is the local lift coefficient, ‘g ¢ the local ce'nter of pressure.

In 2-D, f)(;) i a polynomial of order (n+l) in f if w(f) is a polynomial of
order n. Such smooth distributions f;(g') we call 2-D type distributions, In contrast,,
the s.w. distribution has a kink at the wing axis §=0.

On a wing with {inite aspect ratio and with rounded (parabolic) tips, 2-D type
distributions must prevail over the inner part of the wing span but the kinked s.w,
type must exist at the iip itself, Indecd, this is confirnied by the exact solution,

The latter is derived from the I(inm:rl formulation for the distribation of the pressure
function p over the circular wing:

2k = 2A41 -
plr, ﬂ)‘{/4 = Cz“r cos2xf +}§) Cons1?® sin(2M+1)p (2.3)

Thus p is built up from cleinentary solutions (none of which is physically meaning-
ful individually) with unknown amplitudes Cn' Coordinatcs and notations in (2. 3)

are defined in Fig. 1.#% In addition to (2.3), we have for p the Kutta condition

¥ Our notation dilfers somewhat from that of Kinner!, Contained in (2.3) is the
assumption that the downwash which is given on the wing is Loth symmetrical and
without camber

wit,y) & wly) = w(-y)
Kirmerl shows that, gplit off in a suitable manncr, the camber part f)c of a gencral

pressure function is trivial, and zcro all aloug the wing edge. Also, the analysis

can readily be rewrittun for the case that w(y) is antisyinmetric.
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Py o, = Pl1,-T<fc0) 20 (2.32)

Integrating (2.3) chordwise, we obtain the local lift coefficient

ey 0

- 2
Cyly) = 271/ ) kzo ConPonly) (2. 4)

e

and the local moment coefficient

® -
| $200C,ty) = -7 x::':o (2A+1C,, 1Py, (y) (2. 4b)

L W i T 0

The PZ»( are the Liegendre polynomials, the f’z " their derivatives (resp. the ultra-

spherical or Gegenbauer polynomials)

5 et & 5
P *@ D ay P 1) (2. 4c) f

Both are symmetrical and orthogonal, normalized such that
Put=P, (1) =1 (aux,A) (2. 44)
Inteprating also spanwise, one obtains the vector of the total lift

C;, =8Cy  §, = -Cy/3C, (2. 4e) x

It is given by the first two amplitudes alone, 2
Before turning to the analytical results which erise froin combining (2. 3)

and (2.3a), let us review {wo graphical presentatirns of representative resulis and

relate them to (2.2). These results, Figs., 2 and 3, are {for our refercnce case,

the planar wing normalized to w(y) = 1. I
Shown in Fig. 2 is a relief of p over the right haff wing. Notiryg the result

Loth of lifting line theory (largc span) and of s.w. theory (small span) that the

lift distribution over plonar clliptic wings is an cllipse, «nd assuming that this

would hold also for the circular wing, we would Lave C, = const. = In Fig. 2,

L
CL = 1.790., . Using rounded-off numbers, we would thus expect i:l- e =4CL/1T=2. 28

from 2-D in {2), The actual f)l e, CuTve in Fig, 2 lies somewhat higher; this ic

T
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i due, mainly, to the fact that the chordwise distributions ﬁ(g) are not linecar
(as in (2.2)) but are concave curves. However, they are 2-D type curves as *
expected, over the inner part of the wing span.

For the wing tip we should have 131. e. tip~ f),r = 2C; = 3.58 from s.w. in
(2.2). The actuzl value in Fig. 2 is ];‘1‘ = 3.19. That this value is distinctly
smaller than predicted is not a failure of s, w.. Rather, it turns out that (as was
already likely from Ref, 1) the correct lift distribution over planar elliptic wings
is not an ellipsec. E

Additional information about the transition to the tip is provided by the JJ
curve for ER’ Fig. 3. Over most of the span, §,g, is not much forward of the -:--chord ]

20int g = -0.5. The transition to the tip value -7/ 4, see (2.2), occurs rapidly

POy

and with a vertical tangent,

The singularity at the tip which is illustrated by Fig. 3 is not apparent in

the curve 131. o, of Fig. 2, but a singularity in p occurs as the tip is approached
along the wing axis =0,

A measure for the amplitude of the tip singularity in p is the tip value 13.1..
For it one finds, considering that due to (2. 3a) the two sums in (2. 3) must equal

cach other at the 1., e.,

!

(o8]
P 2 lim P(1,0) =8> (2A+1)C
TN 25 2441 (2.5)

One also shows that, moving toward the tip along any half-ellipse t:const., one

reaches

;ifflf’ (g-const) {l%ff’r} i {iig} (2. 5a)

This is in agreement with the s.w, distribution f)(f) in (2.2). According to (2.7),
the p curves of Fig. 2 over the half-ellipses § = -0.8, -0.6, .. reach the tip
vertical at equidistant points p = 0. 813.1,, 0. 613,1.. «+ « All those for §)0 reach the

same end point p=0, .




Due to (2.4b), the Cu +1 Y be called the moment amplitudes; according

to (2.5), they dctermire i’l" For the lift amplitudcs c?Jl we havc the zero sum
condilion

on

%bczw =0 {2.6)

Utilizing the orthogonality of the circular functions, one finds from the
equality along the 1. e. of the two sums in (2. 3) that the two sets of amplitudes are

fully interdependent and equivalent. Introducing the abbreviation X =(n\+%). we have

[ 3] )\C2
chm =2 g,{z‘:;‘z (all A) (2. 74)
o iC
2A+1 . 1 .
= —_—e times 3 if ¥=0)
"TCZR. 2 ’%xz_ Z ( 2 (2. 7b)

The transformation (2. 7v) leads to a set which automatically fulfills (2.6).
As an example, sct C,=1; C,, ;=0 for A£0. Then

Lond o~
nec -2 . = (% -1 2.8
Cp=2 '”Cz,‘,éo‘ (*-1/4) (2.8)
One readily shows that this sct fulfills (2.6).

The set (2.8) is one of a2 sequence of possible elementary sets which one

might use {c build up the complete solution for a given downwash Wy). Choose an

integer A¥ and let

. = *
Caf1 # 03 Cuuy 0 for A#A 2. 9)

The pressure distribution which results is characterized by its 1. e. distribution

- o osin(2N41)
Ple. =8 gin Canvsl (2.9a)

and is thus a spanwise wavy distribution. We will further discuss the elements

A#* in Section 6,
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The elements A% are not an oplimmum choice because one requires an
infinite number of them to produce a downwash w(y) which is regular at the wing
tip. We generally denote by Ey any clementary set which we use to build up the
solving sct CZ&' and we always require that E, individually fulfills the zero sum

condition (2.6). From (2.8) arises the suggestion to consider the sets
. T -r
Ep=§(r) ; Ej = -K7 0£0) (2.10)

Here ¥ denotes the Riemann function, sce e.g. Table 23.3 of Ref. 6. We call the
scts E{ the rational sets; we will also have to use Jogarithmic sets.

According {o (2.7b), the sct Ei is the leading set, Thus

"2
—5+ Ry (/£ 0) (2. 11)

C?.u( - "

In (2.1}), 2, is an unknown amplitude, and the remainder R is defined by the
condition R =o(0('z).' One can show that R& does not contribute to the tip value

f)T and thus does nout contribute to first order to the tip singularity, Hence we are
mainly intercsted in the elementary pressare function f:z which arises from inserting
Ei into (2. 7a) to determine its corrcesponding sct Cg\“, aund then inserting both Ei
and C%Ml into (2.3). TFor 132 we have analytical resulls for both the 1. e. and the
wing axis §-0:

8f o~
Pz 1.c. “ET:?/T“"”)

P2, axis © 4 ['5(2) - “;z)]/; (2.12)

~ 4y [Zlog(l/ Y+ 14+ Yoop(l/ ) + )

The function f here is the dilogaritlun, sce, e.g., 27.7 of Ref, 6. The two functions
(2.12) exhibit the characteristic properlies of p in Fig. 2: a smooth curve along

the l.e., a vertical tangent at the tip in bnxis'



From (2.11) and (2. )2) follows f)T = 8fta,. From (2.2) and (2. 5a) follows

2
Pp = 2G4 (1). Hence
Ce(1) = py/2 = fa, (2.13)
(b) Structure of the Solution

We describe the given downwash w(y) by a set of downwash coefficien!:s W
00

wly) = Zo (s+1)284 1w B, (y) (2. 14)
6=

where the Pze(y) arc the Gegenbauer polynomials of (2.4c) and are subject Lo the

normalization (2.4d)., Revcrsing (2.14) we have

. w_ = (4s43) Jl{ _?’ w(?)d»I} I’z _“(y)d; (2.14a)
. B ’ o o s )

For example, in our reference problem
W = | w8’1_0= 0 if w(y)2l (2. 14b)

The relation between the sets W and CZ& ig

2,15
W= TGy yy +8)(Cyp) (2.15)

258+1]

where

5,(Cp) = 1S .
1 ZK. 2

*C 2.15
l[s(ux £) (E-I-%)(&.;"s.;.%)} n ( a)

The sct C23+l is given by (2.7a), with A replaced by s, The operator S, is of
higher order; the abbreviction #=s+ corresponds to 1.

One obtains information about the structure of the set C, by observing

2%
that in all technically mecaningful cases the downwash W is regular at the tip, From...

this follows that the set wg must converge more rapidly than any power of (1/ 8).

% This form is considcrably inore convenient analytically than the original pre-

sentation, Eq., (60) of Ref, 1, .
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To this requirement we refer as the tip condition for the set W

The C;s+l which arise {from the E: and which thereby occur in (2. 15) are
generally 0(3’3); hence there have te be certain relations betwecn their amplitudes
a, such that terms of this order (as well as of higher orders) cancel out, The
investigation becomes fairly intricate because of the occurrence of logarithmic

sets in addition to rational sets; on the other hand, it is these logarithmic sets

which enforce certain useful general relations, The result4 we write here in the form

[ 4 3logy ]
~Coy © - a, +R 2.16
2 pane1) 163 X (2.16)

Abbreviating, we write this as

“Coy = GG+ Ry (2. 16a)

and describe it by saying that CZK. is composed of a general set G, common to all
solutions, and a remainder seat Ry. For the unknown amplitude Cx(l.) of GK we have
(2.6) with (2.13).

Bcetween (2.11) and (2, 16), certain clementary sets Elt. have been transferred,
by means of the tip condition for the set W from the remainder R, of (2.11) into
the general set G, On principle, one could continue this process. However, this
would scrve no uscful purpose. Namely, the remainder R, of (2. 16) (which dilfers
of course from that of (2. 11)) contains, in addition to further general sets, also
specific scts which d;scribe the solution for the séecific given downwash w(y). The
orders of magnitude of the two leading specific sets are O(K'4logv-) and 0(&'4).
There is no praci:ical advantagce in knowing general sets which are of higher order
than these specific scts (the next general set is presumably O(R~ Slogzu)).

We will require also some information about the structure »f the sets CZA+1'

If we rewrite (2, 16) in the alternative form

2
11 1 3log !t]
.C ,[_.“, . a. + R (2. 16b)
2 L2 4 entntl e %
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we have again R = O(K'4logw) and have for Jarge A

®C,,,, = @
e N R ETD YR

-3a,lopd/ 168%  + o(1/a%)

(2. 16¢)

The sct LA is a logavrithmic sect which is related to the ¥ (digamma) function; it is

defined by

- ] 1 1
Lo=14 544 ... 4w = L (s+1) - w(} ,
Aooes 7T et - g0)] (2. 164)
= 4logA

(c) Span Loading and Tip Distribution
In order to translate (2.16) resp. (2,16b) into a formula for the lift coeffi-

cient C,L (y), we nced, according to (2.4a), the functions

ely) - 2 E Py ) (2.17)
K:

which are created by the various elcmoentary sets in (2.16). We have analytical

results only for the two leading set95

- -2 - ~
- ely) = 2y + 3¥"1og(2/3) + O(3%)

2 (2.17a)
e3ly) = y“log(2/3) + O(37)
Using these in (2.4a with (2. 106), we obtain
C,(y) = [1 + 1/ 8)7log2/ )] Gy (1) + OF) (2.18)

A useful application of this formula is illustrated in Fig, 4. Numerical
summation of (2.4a) becomes cumbersome near the tip becausc of the denominator ;
Shown in Fig. 4 are, near the tip and to a large sca'e, the approximate curves which
have been calculated truncating (2.4a) after N = 20, 25, .40 terms, The last two
curves have converged well enough co the left, that is, inside y:'fO. 96, but all curves

show increasing waviness toward the right and turn up toward +omw at the tip. This
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remains true for all finitc N, Also shown is the asymptotic curve, the term with
C;ﬁ(l) of (2.18). Ta obtain a fairly accurate curve Ci(y), one has to match the
asymptotic curve with the curve N=40 ncar y=0, 98 and has to smooth out the latter
curve between y=0, 96 and 0, 98.

We insert herc an illustration, Fig. 5, of a similar matching process for

the chordwise distributions 13(}‘) near the wing tip, The curves shown represent the
result of using in (2, 3) the first N=40 amplitudes of cach act, CZ& and CZMI of our
reference solution, Again convergence deteriorates as y =+1 hecause of the
denominator y. The largest error due to truncation occurs along the wing axis.
Here the points due to f)z alone, sce (2.12), are shown as circles,

When y=0, 980, curve and point alinost coincide. The truncation error is

still small, and the Jeading contribution 1')2 still alinost equals the total, As yis

increascd, the latler becomes increasingly more correct while the truncation errors

increase. The slight wavincss in the curve for y=0, 995 is presumably not genuine
but due to truncation errors.

Both Fig. 3 and Fig, 5 show that the transition from the kinked tip distri-
buticn to the smooth ?-D type distributions occurs rather rapidly,

With Fig. 6 we rctarn to span loadings., The reference planar solution is
shown, and all other curves are normalized to its tip value Cc (}). Nlustrated is
the role of the leading terms in (2.16). The curve C} (y) represents the contribution
of Ef; in it, the factor (1/8) of (2.18) is replaced by (1/4), sce (2.17a), and
accordingly it cuts over the correct curve near the tip,

The downwash which belongs to Ei is shown in Fig, 7, donoted as w,. It is
negative infinite at the tip; that of the clliptic lift distribution, not shown in Fig, 7,
is positive infinite at the tip.

In Figs. 6 and 7, basic refers io the simplest set CZK which produces a
finite value w(l):

-3
“Can,basic *| 7 " 73t A2 | (2.19)
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The first two terms on the right cancel between them a term O(s'3log 8) in W (and
produce the correct factor (1/8) of (2.18)). Their combined downwash is shown
in Fig. 7. The third term in (2,19) is added to cancel also the term 0(5'3) in W

The amplitude a 4 Which achieves this is

_33;? 5?‘ 5y = 0.3741083. (2.19a)

The basic downwash curve in Fig. 7 is scen to be almost a horivontal line, but it
has an infinite tangent at the tip, The curve basic in Fig, 6 gocs asymptotically
into the planar curve at the tip.

The point marked collocation analysis in Fig, 6 is determincd from numeri-
cal results7, calculated by means of an unusually careful spanwise integration,
The collocation results coincide with the corrcct planar curve over the inner part
of the wing span, It deviates at the tip by 5.4%; thie deviation arises because
collocation analyses assume an elliplic type lift distribution and thus a finitc slope
in the C,(y) curve at a parabolic wing tip.

The pressure formula (2, 3) and the result (2.16) are specific to the circular
wing, but insofar as (2,16) can bhe translated into the analytical form (2, 18), it
can be generalized to apply to arbitrary wings with parabolic wing tipsd. For such

wings the local lift becomes

L(y) = {[1 T (m—)zlog”«] C, (1) + R(y)}c(y)q (2.20)
b

Here b is the wing span, r the wing tip radius, c(y) the wing chord. The remainder

function R(y) may be expected to have a finite tangent at the wing tip.

3, Numerical Procedure

For a given downwash w(y) one finds the set Wy by means of (2. 14a) and
has in (2. 15) an infinite lincar system fur calculating the sct CZ&’ Solving this

J
system aftcr truncating it to N equations, onc obtains N values CI; which represents

X
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a truncated approximation to the correct set C2 W
Convergence toward the correct set CZM, slows down as N is incrcased
because the sct CZ){ itsclf, being a reciprocal progression, converges with in-

creasing slowness as K->, To improve the convergence, one calculates first

the set CZHI' For this purpose (2.15) is rewritten as

A % 5C
W Aail” Case1 - ? Ao+l (3.1)

The matrix cf is almost the unit matrix; the nurabers Ef (which correspond to the

i
&
F
1
H
}
3
¢
i
i
;
#
2
1
H
i
H
i
t
!

operator Sl in (2.15)) ave small, A short numerical table follows:

B . V)

8 0 1 2 3
0| 0.9112 -0.0470 ~0.0315 -0,0236
1] -0,0117 0.9902 -0.0078 ~0.0064 8
[
2| -0.0030 -0.004L  0.9964 -0.0032 A j
R , ;
3| -0.0018 -0.0021 -0.0021  0.9951 :
The E: are given by
-8
= MS - (M-N)L i d
(M-NILg ifAfs (3.2)
=T - [45/ (45+1)]s if =8 'i
Here '
M= -/ 52 2 $7(i%.:2
&/ (A"-(s+1)7) 3 N=}i/(3%-8%)
L(s,A) = 2L, + (1/21) - ()/25) - 2L,
8
S = 2log2 - ! 1 (3. 2a)

.»:,T"” " TG

= (72/4) Zw_ - 1 .
l(zv 1% (2s41)*

The set L is defined by (2,164d),
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Having calculated the set ClgAH using a truncated system (3.1), one uscs

N *
2’

The complete procedure is easily programmed for digital computationi,

(2. 7b) to calculate the corresponding truncated set C

No large number N is required to obtain engineering accuracy. One obtains an
accuracy of about 1.0~7 with N=40 in the relerence problem (2. 14h); of course, the
accuracy goes down, or N has to be incrcased, if higher cocfficients w_ occur, With
N=40, one has more than sufficient accuracy for most purposes over the inner part
of the wing. If one wants to match near the tip, as in Figs. 4, 5, one needs also

the amplitude 2, of the tip singularity. If no unusual accuracy is required, it is

sufficient to assume that R“=0 in the highest an which have been calculated; then
a, is obtained directly from (2. 16).

4, Calculation of the Reference Solution

(a) Approach

Wec have determined the reference solution plus three further solutions to
very high accuracy in order to definitely determine and demonstrate the details of
the structure of the solutions (and also the powerfulness of the available methods).
We used up to N=60 cquations, used 12 decimnals in the results to extrapolate to
N=00, lost 2 decimals in the extrapolations and performed the further calculations

with 10 decimals, The resulting scts Cz“ are listed in Tables I and II, rounded to

8 decimals.

¥ The CI;K which are calculated directly from (2. 15) decreasc as N is increcased;

those calculated via (3.1) and (2. 7b) increase with N, The two different results

thus establish reliable (though not overly narrow) bouads.

#% A program for the UNIVAC 1108 which dclivers both CI:A' +1 and Cr:u, with N

a variable, can be obtained {rom the author,
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It is casy to ext rapolate to N=a resulis which converge like geometric
series. In the present proi)lexn behavior like reciprocal powers of N was more
likely (see Appendix E of Ref. 8) and was in fact indicated by the numerical results,
For the CZA +10 We used successfully the following principle: Assume

f(N) = f(w) - A/N* (4.1)
where A and r are unknown constants. Then to second order

28(N) = fIN+1) - £{N-1) = 2rA/N*H!

floo) = §(N) + NA(N)/ r

Thus

from which ane finds v, and

WA

The point now ie that, while we do not know if (4. 1) correctly describes the dependency

of Cg $1 00 N, the sanm¢ procedure works fairly well if the term on the right should
be AlogN/ Nr, for exa.mple. In fact, this secemed to be the case, with r of the order
rz3. By performing the evaluation wiih several values M, onc obtains information

about the volidity of the assumption made and about the accuracy of the resulting
value f(0).

The set sz' required a modified approach to be described below., The final
set CZA 41 Va8 used to determine the ampoitude C,(1) of the tip singularity.

(b) Outer Solution

We call the amplitude C‘ (1) the outer solution; it has to be determined by a
mat ching process. The difficulty of matching in terms of C,(y) is {llustrated by
Fig. 4. A more dofinitc approach is provided by the sum condition (2.5), which we

write here in the form

0
Cyl1} = S(N) 4 AN) = 4 %i_(zm)czm +4> @MI1)C

(4.2)
Ni1 2A+1

One visualizes that one coyld calculate S(N) for a number of values N, plot these

over u=(1/N), and extrapolate to the origin u=0. The end value of the extrapolation

P S
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curve would then be C,(1). However, we know from (2. 16c¢) that the leading
elements in the set to be sﬁmmed have the form
Dolog)\ + D, Dzlog)wl- D

3
+
(2M 1)

(2M+1)C + e (4.3)

2A+1 (2A+l)3

Therefore A(N) behaves like ulogu; S(N), plotted over u, will have a vertical
tangent, and exirapolation is unreliable,

To eliminate this difficulty, replace (4.2) by

Cpl1) = S*(N) + 4%(N) (4.4)
with
S*(N) = S(N) + 4N(2N+1)C
Cant1 (4. 4a)
Then, using formula (A4) of the Appendix
s’ 4N+3 2N
A (N) = D,-l(logN-3D, + D, | —"—=1+... (4.4b)
@N+1)* 0 [ 2 3] (2N+1)°

The coefficient Dl has disappeared from the leading terms, and the curve S*(N)
has the form CL“) - Qu). This curve was used in Ref, 2. It is shown at the far
left of Fig. 8; the error in its end value Cl(l) was about 10'5.

The marked improvement which is illustrated by the two main curves of

Fig. 8 is due to matching with new analytical results4. According to (2. 16c)

gy W e e m e

2 .
Dy = Cp(1)/7° 5 D, = -;cl(l)/amz (4.5)
Inserting at first only DO into (4.4b), we replace (4.4) by

N-b
C l = s* N) [l - 4b1+3 + 2 lo}; "’ e 00 .
1) = SO/ |1 - H)r] v (4.6)

(2N+1)
with constants a and b. The first term on the right we denate by S%/[]. Its curve

in Fig. 8 has to have a horizontal tangent at its origin Cl(l).
The lower curve in Fig. 8 has bcen constructed using the original sets
Clga +1 rather than the extrapolated set; this curve must reach the correct origin

CL(I) but we do not know if it has to have a horizontal tangent.
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The upper curve was calculated using the final set CZHI’ up to N=40,

(Accuracy deteriorates when N becomes large because of the factor Nz in (4.4a).)
Disregarding all higher order terms in (4.6), the three constants C"(l), aandb
were determined such that the resulting curve passed through all points (1/N). The
agreement betwecn this curve and the calculated points extended down to N=5, far
to the right of Fig. 8, The origin of this curve is CAI) = 1,5930904.. .

This agrecment, while it tends to be rcassuring, must be somewhat coinci-
dental, howcver; it is highly unlikely that thc higher terms in {4.6) should be
negligible down to N=5, Indced, we should correctly have a:-Dz, see (4.5). This
condition was not quitc fulfilled, and an adjustment had to he made, allowing for
small but finite higher order terms in (4.6). The adjustment led to the new valuc
C,(1) = 1,5930884,. . Both new values are marked in Fig. 8. The smallness of

the difference betwecn them may be taken as an indication of the degree of accuracy

vkl v v .

which had been achieved.

In Table I the value a, = 0.1267740 i s used; to it corresponds C, (1) = 1, 5930890,
In the context of Table I, the number ey has to be treated as an exact number; however, |
the listed value is not claimed to be cor:rect beyond the accuracy range which is
indicated by Fig, 8.

(c) Listing of the Solution

The reference set CZ)L is listed in Table I where it is denoted by Cz“' 0
We discuss first how this table was calculated. 3

Two successive sets Clg:‘l and C{‘L d:ffer because of two different reasons.

N-1 N
One, the sets C2A+l and CZA+1

when C;I‘L is calculated. The second causc has by far the larger effect. Therefore,

difier. Two, *'.e new end term Cl:&n cnters in (2. 7b)

we wrote for N large

N oN-i_ 1 2NG, 4
o~ Cox =T Sz Z0-€)  (times }if y:0) “n

The number € is here introduced to take carc of reason one,




We found that é changed little with % and less with N. If one assumes that,

as N increases, ¢ remains constant and CIZ\IN+1 behaves like logd/ 53 (compare (4. 3);

the constant Dl is small in the case of the reference solution) one can sum the
differences (4. 7) to infinity, and thus obtains CZ#.' Doing this {for both N=40 and
N=60, we found that our resulis were the same within our accuracy requirements

(the agreement began to deterioriatc beyond k=25 since X approached N=40, but

results beyond #=25 were not required),

Table I lists CZR up to =15, and lists the remainder Ry which was cal-
culated by means of the listed value a,. The remainder Ry is broken down further
in the manner shown (I, is again the logrithmic set defined by (2. 16d)), and a

final remainder f{! is listed in the last colunua. This column is zero from k=15

onward,

The constants b 4 and c 4 Were determined by means of the three conditions

= P= =
(a) R,=0; (b)}%nnw i (c) Ry=0 for y>p (4.8)

Here p is a number which has to be determined by trial and error. One chooses

p and dctermines b4 and Cyr using conditions (a) and (b)., The zero sum condition
(2.6) must apply to the sct f{,‘_ (that is, if both analysis and numerical work are
without error) becausec it applies individually to all other sets in CZ)\' Hence the
sum of all 1=1”. from p+l to o must be zero when (a) is fulfilled. However, this
does not insure that (c) is fulfilled. Rather, if p was chosen too small, the 1:.“

beyond p will describe a wavy curve about the zero line.

On the other hand, significant decimals are lost, and the constants b 4 and

c4 will be ill-defined, if p is chosen too large, In fact, it is not possible to

determine these constants very accurately; though seven decimals are listed in

Table I, the last decimals should not be considered reliable, A small change in

b4 and A will affect the {irst few listed values f!.,(; however, since these first few

values almost cancel cach other, the changes will cancel out entirely, and the

validity of (4.8) will not be affected,
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On the other hand, the fact that i was possible to find p, b, and ¢ 4 such

that (4.8 ) was fulfilled to 10 decimals (allowing for rounding-off crrors) and th_at the

set fl& converged smoothly and rapidly: this fact can be considered an overall cou-

firmation of analysis and numerical work. (The value p which we used was p=20.)
The set CZ:L, o converges slowly; written out to eight decimals, it would
extend to about ) = 5,000, Table I demonstrates that, knowing the structure of the
solution, one can store it in form of the short set flu plus the three numbers a,,
b 4 and ¢ 4 (These numbers have to be treated as cxact numbers, of course, when
one uses them to reconstruct the set Cm’ o } The stored nuinbers contain all the
specific information abc:ut the specific solution; the bulk of the numbers in the
infinite set (J2 %, 0 describes the general tip singularity.
We close thissection on the reference solution by noting also the values
CL, 0 and kL, 0 which arise by means of (2.4e). They describe the vector of total
lift for the planar circular wing, A fair number of approximate values are given
in the literature, and soiue of the differences between these are sizeable. Our

results )
Cp, o= 1.79002503 ; -§; = 0.52085758 (4.9)

should be reliable to less than one unit in the last decimal given,

5. Calculation of Additional Solutions

(a) Procedure

To enginecring accuracy, solutions for a given downwash w(y) are obtained
directly from (3.1). If one wants very high accuracy in order to treat more
details of the solution, one can make use of the given rcference solution Cz % 0 to

simplify the numerical procedure., Write instead of (2, 16)

“Coy = -XCay 0+ Hy (5.1)

Here CZx 0 takes the place of the general set G,. In order to insure that the set
»

Hu plays the role of the remainder R,, we have to determine the factor X such that
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a, =Xa, 4 (5. 12)

The leading set in H, is then again 0(x *logu}.

We write H, rather than R, in (5. 1) to indicate that therc is a difference.
The set R, is a2 remainder; it coniains the specific zcts which describe the specific
solution Cu. but it contains also those general sets of bigher order which are not
listed in the general part of (2.16). On the other hand, the set H, is void by
definition of all general sets which might be transferable from R, into G,. The
void set H, is that specific signature of the given downwash w{y, which distinguishes
CZ)L from CZu, o

The advantage of replacing (2. 16) by (5.1) iz that it is mnuch easier to
determine the factor X than to detcrmince the amplitude a,. Our numerical pro-
cedure corresponded essentially to (4.7). We calculated sets C?k and CI;“’ o UP
to N=60 and determined a preliminary value X by assuming in (5. 1) that Hl;.f was
negligible for #%N, This allowed one to calculate HI,;I and to use it in the place of
Cgt on the lef* of (4.7). In the term which then corresponds to CZN 418 the right
of (4.7), the logarithmic term with DO from (4.3) has been eliminated by (5. 1a),
and the rational term with Dl (no longer small) has become the leading term. This
simplifies the summation, and hastens its convergcnce. The new extrapolative

carrections werc generally smaller than those of the refercnce solution.

The results are listed in Table II in a form corresponding to Table I:

“Copny = By = “4(1;41, + e )+ Hy (5.2)

Here n is the number of the solution, and the suffix v denotes its void part. To

find the amplitudes b4 and c 4 Tequires u process corresponding to (4.8). A slight
complication arose from the fact that thy calculation had started from a preliminary
value X. We had to delermine the effect of a unit change in X and had to adjust X

by linear superposition such that the final set ;-I converged properly,
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{b) Samplec Results
If one stores the solutions for a number of linearly independent downwash
distributions wn(y), onc can compose the membhers of a class of solutions as

required. A logical choice for the wn(y) are the Gegenbauer polynomials:

w (y)= B, (y) (5.3)

The corresponding downwash cocfficients w, are from(2. 14)

v = -1 ,
Wn.n = [(n+l)(2n+l)] H wa’n =0 fo a,i'n (5. 3a)

Our reference solution fits into this system as the case n=0. We calculated in
addition the solutions for n=1,2 and 3, Thesc are listed in Table II,

The downwash wn(y) is given in Table II in the form

Wy oY) = wty) - X (5.4)

The complete solution C,  is given by
K, n

C =
24,n = %n%2y,0* Coy ny (5.5)

The void solution C v is obtaincd from Table II by means of (5. 2).

2R, n
In the columns of Table II, there is always a sign change betwcen k=n and
k=ntl, The numerical valuee in the sets '!"-Ix increase as n incrcases, and conse=
quently the listed sets become Jonger. (We used p=25 in (3, 10) in all three cases
of Table 11, )
The void span loadings G ¢, nv(y) which belong to Tablc II are shown in Fig, 9.
They appear to have finite tangents at the tip; however, this has not been invcsti-
gated closcly. An interesting observation of physical interest is the following: one
can form the ratio betwecen two integrals over the wing, the total lift and the integral
over -he downwash momentum, This ratio turned out to be almost invariant between
the reference solution and the three individual void solutions of Fig. 9; the riaximum

variation was less than 1%. It appcars that, as far as the tolal lift is concerned,

the details of how the downwash is distributed over the wing span arc of negligible

R
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importance; they do not secm to affect the outer flow which determines the total lift,

The ratio varied somewhat more when the complete solutions, Fig, 10,
were compared. Small differences between large numbers occurred in the super-
position, and the lift-momentum ratio was found to vary from 0. 895 for n=0 to
0.821 for n=3,

Shown in Fig. 10 are both the downwash distributions wn(y) and their span
loadings C l,n(y)' Al] the latter curves form a downward hook on approaching the
wing tip, reaching a vertical tangent at the tip itself . However, on the scale of
Fig. 10 this hook is no longer visible when n=2; even thouzh the bulk of the set Czu
still represents the tip singularity, the latter now plays a minor role in the span |
loading curve.

The scale ratio between w, and Cz,n in Fig, 10 is so chosen that Vo and
C 2.0 have roughly the same overall magnitude. For nf 0, the curves are wavy,
and the wave amplitudes in C.t,n are seen to be distinctly smaller than the cor-
responding amplitudes in W Each amplitude ratio corresponds roughly to the
ratio between half-wavelength and wing span., This is what onc would expect from
eithcr lifting line theory or slender wing theory; according to either, the lift
cocfficient becomes proportional to the aspect ratio when the latter becomes small

.enough, in agreement with our observation, supposing only that one can interpret the
length of a half-wave as an effective wing span. That one can do this (roughly) is
not entirely unexpected, but it is of interest to see the point verified.

Lifting line theory overpredicts (at small aspect ratios) by the factor 2.
This is illustrated for n=3 in Fig. 11, Thus Fig. 11 implies that the correct result
corrcsponds closely to what we would expcct from slender wing theory for n=3,

On the other hand, there is no slender wing type analysis available to handle the
case n=3. A collocation analysis for n=3 would be feasible but would be rather
cumbersome and would not nccessarily be considered reliable., How many chord-

wise modes would one Lave to use with spanwisc waves this short? From this point

.
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of view, and in view of the distinct difference in the character of the chordwise
distributions in (2. 2), it becomes of interest to take a look also at the pressure

distributions., This we will do in Seetion 7,

6. Alternative Elements

An alternative to the sel wn(y) is the set )\* which was defined in (2.9). I

L)
one sets "CZ)\*H = Wpon
s

of Sl according iv (2, 15) resp. by the contribution of E'\* according to (3.1). For

, then two corresponding clements M*=n differ by the effect

the element A%, the set C, is immediately given by (2. 7b). The downwash w(y)

20
which belongs to »* does not fulfill the tip condition; on the other hand, we saw in
Fig. 10 that the tip singularity becomes Jess and lexs visible as n incrcases, and it
is illustrated by Fig. 12 that the two elcments become incrcasingly more equal
over an increasing range of the wing span,

The downwash distributions A%, calculated by means of (3.1) and (2. 14),
are tshown as full lines in Fig. 12, All \* curves turn down to w(l)=-o but, since
the downward turn occurs closer and closex to the tip as A% increcases, a finite
limit value w(1-0) is built up with an infinite number of eclements A%, Also showr
are (as dashed lines) the distributions wn(y) = f’zn; therec is a noticeable difference- '
between the two elements when n=0, a small difference when n=1, and no visible
difference (except directly at the tip; not shown)when n2.

The set A% can be uscful because of its analytical simplicity if one wants
to investigate, for example, the local effect of a disturbance or discontinuity in
w(y) on the inner part oi the wing span. In such a problem the higher W plays the
important role, and for these the local difference between the two sets of elements
becomes entirely negligible. Analytically the two sets differ, of course, in that
the M elements do not exhibit the complications of (2. 16); however, (2.16) describes
the tail behavior which produces the proper tip singularity in the n-elements. The

amplitudes CZ& and CZHI with #,A 2 8 are those which cssentially desribe the local

pressure distribution, and these hardly different between the two types of elements,
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7. Pressure Distribution

The pressure distributions in Figs. 13 and 14 represent the cases A*=1 and
A=3 but would not look noticeably different if they would represlcnt the cascs n=1
and n=3,

Like Fig. 2, Figs. 13 and 14 show relicf diagrams of p over the right half
of the circular wing., The left hal( of the wing is not shown in Fig. 13; it is shown
in Fig. 14 to exhibit the wavy diétribution of the winyg incidence. In both figures,
the left wing half is stretched into a reclangle for better visibility' of p; furthermore,
the rectangle is cut apart at y=0,9. The {inite chord at the wing tip which is pro-
duced by the stretching operation exhibils the kinked-linear character of the
chordwise distribution at the tip.

Part of a vertical plane through the stretched leading edge is showa by a
line of constant p (Lthe scales of p in the two figures arc arbitrary) and by vertical
lines of constant vy,

The most striking insight of technical interest from }igs, 13 and 14 is
that the waviness of w(y), while well reflected in f’l. . in accordance with (2.9a),
has disappeared almost over the rear part of the wing in Fij, 13, and completely
in Fig. 14. This stai:ilizing cffect is the cause for thic smallness of the wave
amplitudes in CX, q in Fig. 10, However, it is of more gen-.1.l interest; while it
is shown here on idealized models, it must be of gignificanc~ for tjze influence of
any disturbances of short spanwise extension.

The chordwise distributions of p in Fig. 14 arc not kirked (except, of
course, at the tip itself) but they are fairly complicated curves. It had been shown
in Ref. 8 that for the planar circular wing (n=0) already two Birnbaum-Glauert
chordwise modes yield an excellent approximation, For the case n=3, only two
modes (i. e., approximation by a parabola) would clearly be insufficient,

To the degree that we can interchange )\*=3 and n=3, the difference between

the complicated distribution Fig, 14 and the refercnce distribution Fig., 2 is
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contained in the column C2 K. 3v of Table II. This remark illustrates how the bulk
of the complete set C2x describes esscntially the tip singularity, while the details
of p over the inner part of the wing are fully contained in the much more rapidly

converging void set CZ}L v’

8. Conclusion

Since the naturc of the pressure singularity at a parabolic wing tip, and in
particular all required details of the structure of exact solutions for circular wings,
are now known, it has become possible to use numerical rcsults with confidence.
One knows about their convergence bechavior and can match with the asymptotic
wing tip solution. A simple procedure for calculating numerical solutions for the
circular wing is described. It is so far specialized to symmetric downwash dis-
tributions without camber but could be generalized to deal, for example, with an
axisymmetric fan-in-wing configuration,

Four sample solutions have heen calculated io very high accuracy and have
been tabulatcd. The solving scts converge slowly; their bulk describes the tip
singularity, typified by the solution for the planar wing. This has bcen snlit off;
the specific solutions which remain are void of the tip singularity and converge
rapidly. The sample solutions exhibit details of the mechanism of lifting flow
which are of technical interest,

The numerical technique which is described in this paper allows one to
investigatc, for example, the pressure distribution which arises from a local
disturbance or discontinuity in the downwash. In such a problem approximation
by means of the alternative elements of Section 6 may be uscful, since this
approximation becomes increasingly correct with higher order (i.e., s large)
effects and since its analytical simplicity may allow analytical trcatment of the

given problem.
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1 - 14455778 | +.04313858 | -.00148142
2 ~-.03065010 | +.00255042 { ~.00030011
3 -, 1349032 4. 52375 -. 4664
1 4 -, 761010 4. 17088 | .-, 1125
1 -5 -, 4891081 4. 7158 | -, 355
6 -. 340778 +. 3510} -, 134
7 -, 251341} +. 1919 | -, 57
: 8 -, 192064} +. 1137} -, 21
9 -, 152820 | +. 716 | .-, 13
j 10 ., 1260271 4. A3l -, 7
11 -, 102674 ] +. 3251 -, 4
‘i) 12 bl 86400 e 231 “e 2
x 13 - 73712 4. 168 | -, 1
1’0 bl 63628 +¢ ]25 e 1
j 15° | -. 55481 ] +. 96 J__(rd15) _0O

4 3 log K.]
.c - - a .’ R
%9 [ ) 16740 2 ®

.
. e as me W can ,eme wge®

£5 = 0.1267740
s = 0.0029655

. 1 34l
® : ¢; * 0.0416545

Table I, Planar Solution (w.(y),-..l)
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APPENDIX

INFINITE SUMS

All the elementary sets E, from which the solving set C, is built up

2K
obey the zero sum condition (2, (); the leading element Eo is thus given by

o0
Eo:-%;En (A.1)

Since the E, are reciprocal progressions, the rate of converéc-:nce of the sum slows
down indefinitely as K increascs, and numerical term-by-term summation is not
usually a practical proposition.

Some of the requircd sums are tabulated, sec e,g. (2.10) for the rational

sets E: For the first set in (2.106) we have from 6.3.16 of Ref. 6

4
imim'y = 4[w(s/4)+¥ ] = 1. 399048526,  (A.2)

Certain sums involving L, are derived in Ref. 5; for example

i f%‘= 7y(3)/ 4

= 2,103599581

(A.3a)

and

[313(5) - 14¢(2)5(3)]/ 4
1.115624875. .

34

(A.3b)

The sum (A.3b) occurs in Tables I and II. The sum (A.3a) occurs in the leading
term of CZMI’ see (2.16¢).

When tabulations are not available, one can use the formula

Ey f Etax - Lx 5 |

to calculate the tail sum. Equation (A.4) assumes that E“ converges smoothly

and that the function E(x) interpolates E“~ such that E(X) = E Equation (A 4)

K'

e

e St b s e N - " -



was used for example for the extrapolations based on (4, 7).

For the term with logzn in (2.16) one requires the sum

2 lo 2
21_—-&!1“4 = 0.06505816. . (A.5)

which was determined by means of (A.4).
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